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An analytical investigation is made of the effect of shear leg on
the bending vibration of wings that are designed essentially as shallow
box beams, end a procedure is outlined for incorporating this effect
in the determination of bending modes and frequencies. N~ric~
examples show that‘sheer-lagaction in a box beem csn have a large
influence on its vibration characteristics. The calculations indicate
that even though only a small sheer-lag action may be
simple static deflection test of the besm, reductions
higher-mode frequenciesmay be relatively large.
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Vibration tests of airplane wings have shown that discrepancies often

exist between obsemed and celculate~ natural frequencies of ;ings. Among
the possible sources of these discrepancies are aerodynamic and structural

● damping, rotary inertia, shearing deflections, end shear-lag effects, ell
of which are neglected in the usual engineering theory for besm vibration.
The present paper investigates briefly the shesr-lag effects. The shear-
lag theory upon which this paper is based is presented in references 1
and 2.

The strength element of many wings is essenti.alJya shellow box
beam in which the secondary strains arising fran shear lag sometimes have
a significant influence on the bending stiffness, which in turn affects
the vibration characteristics or the wing. That Ehe natural frequencies
of wings cen be appreciably reduced when shear lag is present Is shown
by the included numericel examples. A simple procedure is outlined for
incorporating the effects of shesr lag on bending stiffness in the determi-
nation of bending modes and frequencies. Although not presented here, a
similar procedure can be used to incorporate the effect of the so-called

* bending stresses due to torsion on the torsional modes and frequencies
Of box beams.
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length of besm

Yotq ‘ S modulus

effective sheer

of elasticity

modulus of’cover sheet of box beam

bending moment of inertia of beam cross section

mass of beam per unit len@h

equivalent loadlng used in numericel integration ..-.

totsl shear force

bending moment —

deflection of nth mode of vibration after i iterations for
both derived values of deflection and for velues written in
terms of unit tip deflection

stations along beem

circular frequency of nth natursl mode of vibration, radians
per second

-—.

frequency of nth natural mode of vibration, cycles per second .-
●

number of equal-length bsys into which besm is divided for the
sheer-lag end vibration analysis

distance between stations dividing box beam into bays

statically indeterminate forces in corner flanges at each
station due to shear lag

—

radius of curvature of elastic axis at each station due to
sheer-lag strain in one cover of box beam

paremet.ersused in sheer-lag analysis

area of corner angle or flange plus one-sixth the area of
vertical shear web

area of lo~itudinals and effective sheet material.over one-hsl
the width of box (See reference 1.)
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b

h

t

width from center line of section to centroid of corner flange

depth between centrolds of top and bottom flanges

average thickness of cover sheet .

MEANING OF SHEAR LAG

Before en attempt is made to describe the effect of shear lag on
the vibration of beems, a brief explanation of the term “sheer lag” will
be given. In figure 1 the tensile-stress distribution at two locations
,is shown for a simple sheet-stringer penel under a given loading. In
the region neer the load, the tensile stress is large at the edges where
the load is applied, but in regions remote frm the load the tensile
stress tends to become more uniformly distributed over the width of the
panel because of the shearing stresses which also exist In the structure.
If these shearing stresses caused no shearing deformation of the Sheet
in the pauel, the tensile-stress distribution would necessarily be

—

uniform at all points instead of varying as shovn in figure 1. Shear lag
is the term ccmmonly used to describe the influence that sheering deformations .
have on the stress distribution.

The extent to which sheer lag occurs in a structure is a function of
the geometry of the structure and of the loading. h the elementary
bending theory of beems, the influence of sheering deformations on the
stress distribution is neglected because shearing defomuations are generally
small. In box beans of certain proportions, however, the sheering
deformations cannot he ignored if the stresses and deflection sre to be
predicted accurately: A typical bending-stress variation over the cover
sheet in the vicinity of the root of a cantilever box beam is shown in
figure 2. Instead of a uniform longitudinal stress across the section,
as would be predicted by elementary bending theory which considers the
thin cover sheet infinitely stiff in shear, the longitudinal stresses are .
increased near the edges and are decreased at the center of the beam.
This change in stress distribution causes a change in the beam deflection.
If cut-outs or certain load concentrations were present, similar shear-
lag effects would occur. The deformation of wing structures,including
the effect of sheer lag, is discussed in reference 2.

EFFECTS OF SHEAR LAG ONVIBRATION

Besm deflections ere usually considered to be a function of the
loading, the manner of support, and the beem stiffness which is calculated
from the geometry of the cross sections and the modulus of elasticity of
the materiel. The stiffness of box heem.s,however, is elso influenced by
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sheering deformation of the thin cover sheets. For beams in which this
sheering deformation is appreciable, the incre-aaesin stress end,

.—
k

consequently,in strain in the corner flanges result in larger deflections
for the beem as a whole than would be predicted by elementary beem theory”.
Such beaus ere essentially less stiff than similar besms (same EI variation)
without sheer lag. In problems de+ling with shear-lag beams, therefore,
the ususl concept of beam stiffness must be replaced by an effective
stiffness concept, which takes into account the shear-lag strains present.
With such a concept, the effective stiffness is a function of the beam
loading, since the amount and distribution of the sheer-lag strains along
the beem vary for each different loading condition.

—

Under the inertia loads occurring in vibration, the effective stiffness
often differs appreciably fran the gecmnetric~ stiffness. Since the stiffness
characteristics of the beem change the vibration characteristics elso

—

change. Thus, shear-lag effects cannot be neglected in the determination
of the bendi~ modes

When
iteration

ANALYTICAL

IN

endfrequencies of some box beams. -<.,
—

FROCEDUFUZFOR INCIWDING SHEAR-LAGEEFECTS

TEE DETERMINATION OF NATURAL MODES

AND FREQUENCIES OF WINGS

bending modes and frequencies of besms are determined by the
.

procedure given in reference 3, the vertical shear forces and
bending moments in the beem are found by direct integration of an inertia

loadlng, my, where Y(o)(x) is the assumed deflection.
* --

The
bending moments are converted into curvature by dividing by the stiffness EI;
the slope and deflection ere then found by integration of the curvature.
This process is reyeated, the newly-found deflection being used to compute
the inertia loadi~for the next iteration,.until two successively computed
deflections beer a constant2ratio to each other. This r,atiois the square
of the naturel frequency m .

For a box beam with sheer lag, the process is essentially the eeme
except that the curvature’cannotbe found simply by dividing the bendhg-
moment va?iatlon by the ~’gecmmtricsl”stiffness variation along the beam.

To the basic
.

~-curvature, a correction must be applied which takes into
EI

account the additional curvature caused by the secondary str”ainsin the
“corner flanges due to sheer lag. The addition of this curvature correction.-
to the basic ‘-curvature is simply the process of

EI
account the effective reduction in stiffness of the
totsl curvature would be the seineas if the bending

v --
~operly taking inte

beam. The resulting
moment had been divided . --
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.
by the effective stiffness. Since the s~iffness term EI that appears
in the differential equation of vibration for a beam is the stiffness
that governs the curvature, the analysis of reference 3 still applies to

w
the beams considered herein. In reference 3 the geometrical stiffness E1
computed fra the geametry of the cross sections of the beam was used,
whereas in the present paper en effective stiffness which incorporates the
effect of shear lag is used.

An outline of the procedure used in this paper to determine the
shear-lag curvature corrections will be given to clarify the numerical
examples which are presented. The procedure is an adaptation of the more
general shear-lag analysis presented in references 1 and 2. For a doubly
symmetrical box beam, the steps are as follows:

(1) Divide the box into j equal bays. (See fig. 3.) For each
hey, determine the constants AF, AL, b, h, and t for the simplified
cross section (fig. 4), as used in the shear-lag analysis presented in
reference 1.

(2) From these simplified crose sections, campute the fol.lowlng
sheer-lag parameters:

‘2=:(!+3
K

P =
ttenhn

*,
K

~=
t Si.ph 10.

1 SAL
7./.=-

“t (Y+‘L)
(In reference 1, p, q, and y
denominator; but, since G is a
equations given in step (4), the

(~) From an assumed iner~ia
. iteration of the vibration analysis ccm~ute ihe aver~e vertical shear

force exist~ in the webs in each bay (one-ha~ the total vertical
shear for a given bay).

. .

are defined with a factor “G in the
canstant that cam be factored from ~he
factor is @tted in these formfias.)

loading aiY(”) on ~he beam in the first
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(4) F&cm the average vertical.shear in the webs of each bay campute
the self-equilibrated groups of X-forces at each station. They are
defined by the equations from reference 1

XjqJ
- ‘J-1 GJ + PJ-J + ‘f2qJ-l ‘ = ‘yJ + 7J-1

1

‘J-lqJ.~
( )

- ‘J+ PJ-1 + pJ-2 + xJ-3qj-2 = ‘?’J-l+ 7J-2

J
(1)

. . . . .

Xlql - x~ = -71

The subscripts on the X-forces refer to the stations and the subscripts
on the persmetere p, q, and 7 refer to the bays as they are numbered
in figure 3.

(5) Computethe curvature correction at each station from the
X-forces by the relation

.

lx
R-=m~

(2)

where AF and h are computed at the station points. Equation (2)
gives the correction due to sheer lag

(6) TO the .#-curvature at each

analysis, add the shear-lag curvature
the remaining steps of an iteration.

New curvature corrections should
iteration; but if the inertia loading

in one cover.

station ccmputed in the vibration

correction for both covers. Complete

be computed in each succeeding
computed fram the assumed deflection

-.

in the first iteration is reasonably representative of the true loading,
the curvature corrections computed frcm this loading sre accurate enough
in most cases. Furthermore, precise ccxnputationsare not ‘Justifiedbecause

—

the accuracy of the shear-lag theory for loadings of the type that occur
in vibration is unknown. In those cases for which curvature corrections

u—

are camputed from assumed deflections differing widely from the derived
shape, however, a second set of curvature corrections may improve the
accuracy of the derived mode and frequency. ‘ J
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NUMERICAL EXAMPLES

*
.

In order to show the effect of shear lag on bending vibration,
frequency end mode calculations have been ~rformd for the two uniform
box beams shown in figures 5 end 6. BeemA (fig. 5) was designed to
show only a small amount of shear-lag action in static loading as shown
by the fact that under a concentrated tip load the calculated tip
deflection of this beam is only two percent greater by shear-leg theory
than by ordinary beam theory. BeamB (fig. 6) was designed to show en
exaggerated sheer-lag action in static loading tests. Under a concentrated
tip load, the calculated increase in tip deflection due to shear lag in
this beam is about 19 prcent. The following table gives a comprison
of come of the natural bending frequencies of the two beams ccmqnzted
both with end without taking shear lag into account:

IIFrequency

Beam Mode (Cps) Percent

Sheer lag Ho shear lag
change

1 45.7 b6.65 2.1

A 2 260 292 12.3
r 1

3 672 817 21.6

B 1 34.6 43.8 21.0
-- —

v

The calculations indicate that, even though a box beam shows little
shear-lag action under a simple static loading (for example, beam A),
appreciable reductions in the eecond end higher-mode frequencies of vibration
might be expected. For a box beam that shows lerge sheer-lag action under
a simple static loading (for example, besmB), a correspondingly large
reduction in even the fundamental bending frequency might be expected. A
brief discussion of the calculation for each beam is presented in the
following sections.

Beam A

Fundamental mode.- The procedure followed in the determination of
the fundamental mode end frequency is indicated in the upper half of table 1.
The first iteration is shown in detail and each step follows closely the
equivalent-load method shown in table 1 of reference 3, except for the
insertion of the sheer-lag curvature corrections (column 7), which are
added to the ~-curvatures in column 8. (The mass per unit length m IS
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carried aa a common factor in each column because it is constant over the
length of the beam.) The sheer-lag curvature corrections are calculated *
from the X-forces which are defined by the system of equations in the
lower half of the table. The shear data in column 4 are used to ccqute
the values of the parameter 7, which form the constant terms in the
equations (equations (1)). The coefficients of the X-forces are determined
from the shear-lag p=emeters p and q. The X-forces me solved for
frcm this system of equations. The curvature corrections E/R are then
calculated from these X-forces by the-use of the equation shown in the
table. (1.2/mX2 is a factor used to convert the curvature corrections to

the same units as the $curvature and the factor 2 takes care of the <_
correction for both covers of the symmetrical box beam.) The curvature
corrections are then inserted in the iteration procedme (COIWUI 7’)”

The fundamental mode, as determined frcm one more Iteration, is
listed in column 15. Shear lag has little effect on the shape of the

d

f~damental mode, as shown in figure T(a). The frequency of vibration
with sheer lag taken into account is ccmputed in the table. If no shear

—

lag were present, the fundamental.frequency of this beem would be the
same as that for a tiform cantilever, or

—

Second end third modes.- The ~ocedure fcr fiMin& the second and
third modes end frequencies is the same as that given for higher-mode
determination in reference 3 except for the sheer-lag curvature corrections,
which are introduced in the same manner as illustrated for the first
mode in table 1. The computations show that sheer lag accounted for about 39 _
and47 percent of the total curvature at the root station of the beam in
the second and third modes of vibration, respectively. The curvature at
the other stations was affected to a lesser but still significant extent.
The effect of these curvature corrections on mode shape is illustrated
in figure 7. It is evident that conclusions regarding the frequency
change associated with these mode shapes cannot readily be drawn from
comparison of the deflections alone because the curvature differences in
the mode shapes, which also influence the frequency, are hidden. G

*

.:
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Beam B .

The length-width ratio, as well as the AF/AL ratio, for beem B
is considerably smaller than that for besm A end, as might be expected
fran the static-load deflection comparison presented ~eviowily for these
two beams, a more pronounced shear-leg action was noticed for beemB
in the fundamental-mode calculation. The calculations showed that shear-
lag action accounted for about 48 percent of the totel root curvature.
The resulting sizeable reduction in frequency (21 percent) would not be
expected in a box beem of ordinary design, but this reduction does
indicate that the effect of sheer lag can be appreciable even on the
fundamental mode of vibration.

CONCLUDING DISCUSSION

The investigation has shown that, even though the shear lag in a
given box beem had a relatively insignificant effect on the static
deflection of the beam under a tip load and on the fundamental frequency
of vibration, it caused sn a~eciable reduction In the higher frequencies.
This increasing effect of shear lag on the higher modes can be explained
by the fact that the relatively greater rates of change of the bending
moment over the span in these modes of vibration are accompanied by
increased sheer deformation of the cover sheets snd result in a reduced
flexurel stiffness of the beam.. It has been pointed out that shearing
deformations in the thin cover sheets effectively change the stiffness,
end hence the vibration characteristics, of the beem.

*
Shear deformation of the cover also takes place around discontinuities

and abrupt changes in cross sections, such as cut-outs, end eround points
of load concentration. In an actual wing, sheer-lag effects due to these
disturbances may be of more importance than the simple effect treated in
this paper end should therefme be investigated when a determination of
the modes and frequencies is being made. The analytical procedure for

.

.—

—
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.

introducing shear-lag corrections for more complicated structures di~fers
little from the procedure presented herein.

Langley Memorial Aeronautical Laboratay
National Advisory Committee for Aeronautics

Langley Field, Vs., February 2, 1948
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Figure 1.- Tensile-stress distribution inapanel with shear
deformation of the sheet.
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Figure 2.- Bending-stress distribution in a cantilevered
box beam.
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Figure 3.- Notation for bays and stations in shear-lag and
vibration analysis.
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Figure 4.- Simplified cross section used in shear-lag analysis.
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Figure 5.- Box beam A used in numerical examples. —
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Figure 6.- Box beam B used in numerical examples.
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Effect of

(c ) Third mode.

shear lag onthe bending modes ofvibration
ofa uniform box beam.
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